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SUMMARY 

A compressible stability analysis computer code is 

developed. The code uses a matrix finite-difference method 

for local eigenvalue solution when a good guess for the 

eigenvalue is available and is significantly more compu- 

tationally efficient than the commonly used initial-value 

approach. The local eigenvalue search procedure also re- 

sults in eigenfunctions and, at little extra work, group 

velocities. A globally convergent eigenvalue procedure is 

also developed which may be used when no guess for the 

eigenvalue is available. The global problem is formulated 

in such a way that no unstable spurious modes appear so 

that the method is suitable for use in a black-box stability 

code. Sample stability calculations are presented for the 

boundary layer profiles of an LFC swept wing. 



SECTION 1 - INTRODUCTION 

The stability properties of compressible laminar boundary 

layers are particularly relevant to the phenomenon of laminar- 

turbulent flow transition. Recently, interest in this problem 

has increased because of applications to Laminar Flow Control 

(LFC) technology. In such applications there is a need for 

fast computer codes to perform efficient design calculations. 

The computer code SALLY [l] was developed for this purpose. 

It can perform optimized stability calculations for determin- 

ing suction requirements for maintaining laminar flow over 

swept wings. However, SALLY uses incompressible stability 

theory so it solves the eigenvalue problem for the fourth- 

order Orr-Sommerfeld differential equation. 

The linear stability analysis of three-dimensional com- 

pressible boundary layers involves solution of an eigenvalue 

problem for an eighth order system of differential equations. 

In the case of two-dimensional boundary layers or in the 

absence of dissipation in three-dimensional flow, the eighth- 

order system reduces to sixth order. 

The basic equations for the linear stability analysis of 

parallel-flow compressible boundary layers are derived using 

the Sam11 disturbance theory. Infinitesimal disturbances of 

sinusoidal form are imposed on the steady boundary layer flow 

and substituded in the compressilbe Navier-Stokes equations. 



Assuming that the mean flow is locally parallel, a set of 

five ordinary differential equations is obtained. Of these, 

there are three second order momentum equations, one second 

order energy equation and one first order continuity equation. 

Following Lin [2-41 (his work involved only sixth order 

system), this system is reduced to a set of eight first 

order ordinary differential equations making the system 

amenable to initial-value numerical integration procedures. 

All previous numerical investigations of compressible 

flow stability [5-101 make use of the initial value approach 

for the solution of this system of eight first-order equa- 

tions (or the reduced system of six first-order equations). 

In these studies, the integration is started at a boundary 

(usually the free stream boundary since the asymptotic solu- 

tion of the stability equations provides initial values for 

starting the integration) and marched to the other boundary 

(solid wall) typically using a Runge-Kutta integration pro- 

cedure. Four linearly independent solutions are sought 

by means of this integration. The difficulty encountered 

in this scheme is that a straight-forward integration fails 

to produce four independent solutions because of parasitic 

error growth. This difficulty is usually overcome by an 

orthonormalization technique [see, e.g., 111. Upon obtaining 

four accurate linearly independent solutions, linear combina- 

tions are formed to satisfy all but one boundary condition 

at the wall (the boundary towards which the equations are 

marched). The remaining boundary condition is satisfied only 
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when the eigenvalue condition is satisfied. It is normally 

imposed iteratively using a Newton-Raphson procedure which 

results in the desired eigenvalue. 

These initial-value methods to solve the compressible 

stability equations are often computationally slow and thus 

inefficient if used in a black-box stability code. Further- 

more, the initial-value methods require a good guess for the 

eigenvalue which is usually not available when one encounters 

a new problem. In such cases one can obtain eigenvalues using 

a local search procedure only by trial and error, which is 

neither elegant nor efficient. 

In the present work a computer code is developed for the 

compressible stability analysis of three-dimensional boundary 

layers. The code includes two eigenvalue search procedures- 

global (which is to be used when no guess is available) and 

local (which is used when a good guess is available). The 

stability equations are solved in their original (3 second- 

order momentum equations, one second-order energy and one 

first-order continuity equation) using a matrix finite- 

difference-method. The reduction of the normal momentum 

equation to a first order equation for pressure fluctuations 

as done by Lees and Lin [2] is not done here since that re- 

sults in unstable spurious modes when the problem is solved 

using the global method (see below). 



The finite-difference representation of the stability 

equations results in a block-tridiagonal system of equations. 

A generalized matrix eigenvalue problem is then set up and 

solved using the complex LR algorithm [12] for global eigen- 

value search. The local search is performed by inverting the 

block-tridiagonal system using a block LU factorization to- 

gether with inverse Rayleigh iteration for the eigenvalues 

[12] in which the eigenvalue, eigenfunction and its adjoint 

are obtained simultaneously. One can obtain the group ve- 

locities which are needed in an eigenvalue optimization pro- 

cedure [13] at little extra cost to the local eigenvalue 

search. The procedure used in the present study for local 

eigenvalue solution is significantly faster than the initial 

value approach employed by previous investigators. 

Some sample calculations are performed for the stability 

analysis of compressible three-dimensional boundary layer 

profiles obtained for a laminar flow control wing using the 

boundary layer code developed by Kaups & Cebeci (see ref. [l]). 

particular wing chosen is a 35O swept super-critical wing 

with an 8 foot chord. The free stream Mach number is 0.89. 

Mack [7] and Lekoudis [9] reported stability calculations 

for the same wing using their stability codes. We have 

chosen three stations on the wing which represent forward 

and rearward crossflow instability regions and a midchord 

streamwise instability region. Some of the relevant boundary 

data is given in Table 1. More details on the wing and press- 

ure and suction distributions are given in reference 171 and 

[9]. 5 



SECTION 2 - COMPRESSIBLE STABILITY EQUATIONS 

Consider the stability of a three-dimensional locally- 

parallel compressible boundary layer flow. Let us use a 

Cartesian coordinate system XlY,Z in which the y-axis 

is normal to the solid boundary and x,z are parallel to 

it. (In the particular case of a wing, the x-axis will be 

assumed to be in the direction of the normal chord and the 

z-axis will be along the span.) If u,v,w are the X,YlZ 
components of the instantaneous velocity, respectively, and 

p and T are instantaneous pressure and temperature, 

then, assuming that the base flow is locally parallel, 

U(X,Y,Zlt) = uo(y) + zi (y) el(ax+Bz-wt) 

v(x,y,z,t) = G(y) e 
i(ax+Bz-wt) 

w(x,y,x,t) = we(y) + G(y) e= (ax+l3z-wt) 

P(x,y,z,t) = p(y) e i (ax+Bz-cot) 

T(X,Yrzrt) = To(y) + ‘i (y) e=(ax+Bz-wt) 

(1) 

(2) 

(3) 

(4) 

(5) 

Here Uo,Wo and To represent the steady unperturbed boundary 

layer and quantities with tildas denote complex disturbance 

amplitudes. 

Substituting Eqs. (l-5) into the compressible Navier- 

Stokes equations, it can be shown that the linear parallel 

disturbances satisfy the following system of ordinary differ- 

ential equations: 
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(AD2+B~+c)$ =o (6) 

where d is a five-element vector defined by 

iaii + fG, +, j3, T, .G - Bi3 T (7) 

Here A,B,C are 5 x 5 matrices, and DE a 
dy ' 

where y is the 

normal boundary layer coordinate. The non-zero elements of 

the matrices A,B,C are given in Appendix I. 

The boundary conditions for Eq. (6) are 

y = 0; $I1 = $I2 = o4 = Q5 = 0 (8) 

Equations (6-8) constitute an eigenvalue problem for 

the frequency w and wavenumbers a,6 . For a given Reynolds 

number R, this eigenvalue problem provides a complex dispersion 

relation of the form 

w = w(a,B) (9) 

relating the parameters a,@ and w which, in general, are all 

complex. In our analysis we choose to use temporal stability 

theory in which a,f3 are real and w is complex. It is thus 

assumed that the wavelike disturbances have 'x and z com- 

ponents of wave number cx and f3 , respectively, and have a 

frequency wr = Re (w). It is further assumed that the dis- 

turbances grow or decay only in time. They grow if 

w. 1 = Im(w) > 0 and decay if wi< 0. 

7 



The selection of temporal theory results in a linear 

eigenvalue problem for w so that global eigenvalue techniques 

can be applied. It is possible to extend the global method 

to the spatial problem for the compressible stability equa- 

tions but the work involved and the computer resources re- 

quired discourage any such attempt. It appears that the most 

efficient way to automatically provide a guess for the local 

solution of the spatial stability problem is to first solve 

the temporal global problem and then obtain the spatial guess 

using the group velocity transformations [14]. 

Equation (6) represents three second order momentum 

equations, one second-order energy equation and one first 

order continuity equation. It is possible to eliminate 

pressure entirely between these equations and to reduce 

the system to four second-order equations for velocity and 

temperature fluctuations. This reduction may seem desirable 

for the numerical integrations since the order of the matrix 

will be reduced. However, the elimination of pressure makes 

the equations singular and their solution becomes difficult 

to obtain in a numerically stable way. Similarly, it is 

possible to reduce the system of eight first-order equations 

to a single eighth-order differential equation 1151, but 

this too is computationally ill conditioned. Thus, the follow- 

ing analysis is carried out in terms of five equations: three 

second-order equations for streamwise and spanwise velocity and 

for energy, one first-order equation for continuity and one 

8 



second order (but effectively first-order) equation for 

the normal velocity component. 

9 



SECTION 3 - FINITE-DIFFERENCE REPRESENTATION 

The governing system of equations (6) for compressible 

flow is represented using a second order finite-difference 

formula on a staggered mesh (see Figure 1). 

First the boundary layer coordinate Y, O~Y~Y, is 

mapped into the computational domain O<n<l by the alge- - - 

braic mapping 

n =9-Y 
L+Y (10) 

where g=l+$ 
e 

Here ye is the location of the edge of the boundary layer 

and L is a scaling parameter chosen to optimize the accuracy 

of the calculations. After some experience it has been found 

that a good choice for L is L = 2yo where y, is the value 

of Y at which the streamwise component of the mean velocity, 

uO’ 
achieves l/2 its freestream value. In the present study 

we choose y = 100. e However, a much smaller value of y,(=15) 

can be chosen for the local method since the free stream 

boundary conditions are imposed using the asymptotic solution. 

The computational domain rl is divided into N equal inter- 

vals and the second order equations are represented as 

fl Aj 
dj+l -2L+LBl 

Arl ’ 1 
+ 

10 



+ d2 [f3Bj 

(j=l l---l N - 1) (11) 

where 4. 
3 

is the value of $ at n =,j/N and has components 

'k,j 
(k = 1,...,5). Also, 

dl = 1, d2 = 0 except 

dl = 0, d2 = 1 for the 6 component 

of 6, 

(g-?-l) 4 
fl=-- g2L2 

2 (g-T-l) 
3 

f2=--22 
gL 

(g-rl) 2 
f3= gL 

The first order continuity equation is represented as 

f3 Bj++ 5, *+1 -6. 
Arl 

' + c. ,+L q+1 = 0 
2 2 (12) 

(j = O,...,N - 1) 

Equations (11'12) along with the 8 boundary conditions 

(8) represent 5N+4 equations for 5N+4 unknowns. Since the 

velocity and temperature disturbances are assumed to be 

identically zero at the solid boundary (n = 0) the system 

reduces to 5N equations for 5N unknowns when these boundary 

conditions are applied. This is a block-tridiagonal system 

11 



of equations with 5 x 5 blocks which is solved using fully 

pivoted LU factorization. 

Inthe global method, the free-stream conditions (n = 1) 

are that c$~=$~=c$~=c$~=O at n = 1. This results in a linear 

eigenvalue problem for n. In the local method, asymptotic 

behavior of $ as y + 00 is found from (6) (see appendix II). 

This asymptotic behavior is used to obtain a free-stream 

boundary condition of the form 

(ED + F) $ = 0 (13) 

that is applied at n = 1 on components $k(k=1,2,4,5). 

12 



9 SECTION 4 - GLOBAL METHOD 

When no guess is available for the eigenvalue of .interest, 

it is best to use a method that is globally convergent and nearly 

guaranteed to converge to the eigenvalue. Such a method may 

be based on algorithms for calculations of the eigenvalues 

of a general complex matrix [12]. 

When the compressible stability equations (11-12) are for- 

mulated as a matrix problem, they take the form 

Ti$= wB$ (14) 

where w is the eigenvalue and T is the discrete representation 

of the eigenfunction. The eigenvalue is determined by the 

determinant condition 

Detl x - w El = 0 (15) 

For the present problem, B is invertible so (15) may be 

solved as 

Detl E-1 x -wII= 0 (16) 

which is the standard matrix eigenvalue problem, solvable by 

LR methods [12]. 

One has to be very careful in formulating the eigenvalue 

problem (14) using global methods to avoid the generation of 

growing (unstable) modes that are not physically relevant. 

These spurious unstable modes do not correspond to solutions 

of the differential equation- as the spatial resolution used 

to discretize the eigenfunction increases true modes of the 

differential equation converge while spurious modes do not. 

13 



A clumsy way to distinguish spurious modes from true 

modes is to change the spatial resolution and retain only 

those modes that do not change appreciably. This is neither 

efficient nor elegant. 

A better way is to eliminate the spurious unstable modes 

entirely. Spurious stable modes are still possible, but since 

these stable modes are normally very stable, they are not of 

much interest and can be easily disregarded without testing 

their true nature. We shall now describe a technique for 

eliminating the spurious unstable modes. 

The idea is simply that the spurious unstable modes 

would, if we used the same numerical method used for the 

stability problem on an initial-value problem instead, cause 

the unconditional instability of the numerical solution of 

the initial-value problem. On the other hand, if we were 

careful enough to use a numerical method for the stability 

problem that was also numerically stable for the initial- 

value problem, then no spurious unstable modes would exist. 

Thus, one way to avoid spurious modes is to set up the 

problem as one would for an initial value problem and to use 

a finite-difference scheme for the eigenvalue analysis that 

is consistent with the scheme for the initial-value problem. 

This is the method used in the present study: no spurious 

unstable modes appear in our calculations. In some initial 

work on this problem, we followed Lees and Lin 121 by re- 

ducing the second-order normal momentum equation to a first- 

order equation for pressure using the continuity equation. 

14 



This gives three second-order equations (two momentum and 

one energy equation) and two first-order equations (one for 

pressure and another for normal velocity). When the matrix 

eigenvalue problem is set up using this system of equations 

by means of finite-differencing, several unstable spurious 

modes appear. 

When the eigenvalue problem (16) is solved using the 

LR algorithm, the storage requirements are of O(K2) while 

the computational work involved is of O(K3) where K = 5N for 

the eighth order system of equations and K = 4N for the sixth- 

order system. It can be seen that the global method is 

relatively expensive computationally so it should be only 

used when no guess of the eigenvalue is available. 

Some computer timings for the global method on a CYBER 

175 computer are given in Table 2. All timings were obtained 

using the internal clock and are averaged over the three test 

cases listed in Table 1. Since the eigenvalue obtained by 

the sixth-order system is not much different from that of 

the eighth-order system, the use of the sixth-order system 

for the global method is recommended. 

15 



SECTION 5 - LOCAL EIGENVALUE SEARCH 

If a guess for the eigenvalue is available then one 

can improve its value by a local method. One way to perform 

the local analysis is to use a simple iterative'method to 

find the eigenvalues of the matrix equation (15) that approxi- 

mates the compressible stability equations. An effective and 

efficient procedure for doing this is to use the inverse 

Rayleigh iteration procedure [12]. The generalization of 

this procedure to the compressible stability problem results 

in the following algorithm 

(A - Wk Bl -J (k+l) = g ; tk) 

(A _ Wk E)T.~ (k+l) = sT $ tk) 

Wk+l = 

(17) 

(18) 

(19) 

The iteration cycle is started with a guessed eigenvalue 

w o and by assuming any smooth functional distribution for the 

eigenfunction q(O) and its adjoint J(O). In an integration 

of stability characteristics across a wing J(O) and J(O) may 

be chosen as the eigenfunction and adjoint from the previous 

station. 

At the end of each iteration cycle k the eigenfunction 

and its adjoint are normalized so that 

16 



(20) 

The algorithm (17-20) has a rapid (cubic) rate of con- 

vergence. The error satisfies Wk+l- w = 0 ( (w,-w) 3). 

We solve the block-tridiagonal form of Eq. (17) by 

using a fully pivoted LU method, in which case the same LU 

factorization applies to the solution of the adjoint problem 

(18). 

In practice it is not necessary (rather, not recommended) 

to update the eigenvalue approximation uk after each 

iteration to the eigenfunction and its adjoint using (17-18). 

We have found it to be most efficient to iterate (17-18) 

approximately 4-10 times while keeping tik fixed (and, 

therefore, using the same LU factorization of z-wkg). Once 

the eigenfunction is refined less than 5 iterations are 

required for a fixed ak. Generally, only two outer itera- 

tions [LU factorizations and applications of (19) to update 

Wk to Wk+ll are required to converge to an eigenvalue. Some 

data on the speed of the local eigenvalue solution is given 

in Table 3. The time reported also includes the calcula- 

tion of group velocity. Since the eigenfunction and its 

adjoint are available as a result of local eigenvalue search, 

it costs little extra work to compute group velocity (see be- 

low). 

17 



To show the sensitivity of the local method to the 

initial guess some sample calculations are made and re- 

ported in Table 4. The converged eigenfunction distribu- 

tions vs y for case 1 using 80 points are plotted in 

Figure 2. 

18 



SECTION 6 - CALCULATION OF GROUP VEJOCITY 

The group velocity is of importance in relating the 

results of spatial and temporal stability theory and in 

several optimization problems [13]. In a layered flow 

with three-dimensional disturbances having wavevector 

(cl,f3) and frequency w(a,B) , the group velocity Gg is' 

;: = (2% 
g 

3.S) 
aa 1 af3 (23.1 

One way to compute the group velocity is simply to 

compute the frequency w for several nearby values of a,B 

and then use finite-difference approximations to f 
g' 

How- 

ever, this procedure is not very efficient. 

A much better way to compute the group velocity is 

to first write the compressible stability equations for 

three dimensional disturbances in the form 

L(a,B,w(a,B))$ = 0 

Taking the derivative of (22) with respect to c1 gives 

(22) 

(23) 

Taking the inner product of (23) with the adjoint $ of the 

eigenfunction & gives 

(24) 

19 



since (5 L?;6/ac,) = (LT$ I I az/aa) = 0 . There is a similar 
afd expression fOr,a. Note that the inner product in (24) is 

the usual L 2 vector inner product: 

(1,~) =. ~ fi g 
i (25) 

i=l 

It is not necessary to use either the adjoint eigenfunction 

of the differential equations (6) or the inner product 

Jf(y)g(y)dy;$ is the adjoint of $ with respect to the 

simple discrete inner product (25) and suffices to annihilate 

the term a$/aa in (23). 

The computation of the group velocity using (24) re- 

quires only the calculation of aL/aa $(and aL/af3 6) since 

L 3, awaw 4 are available from the local eigenvalue itera- 

tions. 

In Table 5, group velocities calculated by the present 

method for the three test cases are compared with those cal- 

culated by central differencing: 

aw wj+l-wjAl 

aa =a 
j j+l'"j-1 (26) 

au wj+l-wj-l 
T& j = Bj+lmBj-l 

which required four extra eigenvalue calculations so the 

cost of determining group velocity was four times the cost 

of the eigenvalue search. Using the present method, group 

20 



velocity can be obtained at less than 10% of the cost,of.the 

eigenvalue search. 

21 



SECTION 7 - RICHARDSON EXTRAPOLATION 

The finite difference method presented above is only 

second order accurate. However, the accuracy of the eigen- 

value (and the group velocity) obtained by this procedure 

can be enchanced by Richardson extrapolation to the limit 

An = l/N -f 0 [15]. 

If 

s(o) 
i = w(hi) (i = O,...m) (27) 

where hi is the grid size and w is the eigenvalue computed 

by a method with error of O(h2), then 

s (j-1) 

,W = ,(j-1) + i-l 
_ ,(j-1) 

i 
i i+l 

(h 
hi 2 

) -1 
i+j 

(28) 

Cj=l I...., m, i=O ,.....,m-j) 

Cj) The resulting approximation S i has an error of order 

O(hj+2 ) when appropriate sequences of grid sizes h. are used. 1 
We present here eigenvalue calculations for different grids 

(hi = ;I and their extrapolated values. The sequence of 

hi chosin is that proposed by Bulirsch and Stoer [16]. 

Tables 6,7,8 give eigenvalue results for boundary layer 

data cases 1,2 and 3, respectively. 

It can be seen that an eigenvalue converged to 5 sig- 

nificant digits is obtained as a result of the extrapolation 

procedure. For most applications, an eigenvalue that has 

converged to 3 significant digits should suffice. This is 

22 



achieved by extrapolating only between three eigenvalues 

at N = 20, 40 and 60. For three point extrapolation, (28) 

reduces to the following formula 

22 2 = [hl-h2) /ho Iwo + 

7 7 7 
[(h;-h;W;]wl + [(ho 2-h$/h;]w2 

22 2 
N-yh2)/hol + 

22 2 
+I (ho-hl)/h21 (29) 

It is our experience that a reasonable answer can be 

obtained by this extrapolation formula using only 20, 30 

and 40 points. Eigenvalues obtained using this set of 

points are compared with the converged value using 20, 40, 

60, 80, 120 and 160 points in Table 9. The eigenvalue 

accurate to 3 significant digits is obtained in about 2 

seconds of CYBER 175 time. 
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SECTION 8 - CONCLUSION 

Efficient local and global eigenvalue methods' for the 

stability analysis of plane-parallel three-dimensional corn- 

pressible boundary layers have been developed. The computer 

code that implements these matrix boundary-value methods is 

significantly more efficient than previous codes based .on 

initial-value methods and is suitable for a black-box sta- 

bility analysis package. 
, 
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APPENDIX I 

The Stability Equations 

25 



The stability equations for three-dimensional compressible 

boundary layers are written as in (6) : 

(AD2+BD+C)$=0 

where 

and 

d 
Drdy 

Here u, c, c represent the complex amplitudes of the per- 

turbation velocity in x, y, z directions,respectively and 3, 

? are the perturbation amplitudes of pressure and temperature. 

The disturbances are assumed to be of the form 

?4Y) e i(ax + Bz - Ut) 

where a,@ are x and z wave numbers,respectively and w is the 

(complex) frequency. 

The non-zero elements of 5x5 matrices A, B and C are given 

by 

All = 1 

A22 = 1 

A44 = 1 

A55 = 1 

26 



B1l = 
duO 

k q Ti 

B12 
= i(X-1) (a2 + B2) 

B14 = 
dpO 

tq 
(au; + Bw;) 

B21 = i(X-1)/A 

dvO 
B22 = t dTo TA 

R 
B23 = - 1.I,x 

B32 = 1 

B41 
= 2(y-1114~ + BW$(n2 + B2) 

2 dlJ, 
B44 = c q T, 

B45 = 2(y-1)M2 (5 ccxw; - 8U&(a2 + f32) 

1 dpo 
B54 = “0 T (“wo - Bu;) 

1 dl-lo 
B55 = ‘“0 iq T;, 

51 = -[i+ (“Uo + BWo - w) + A(a2 + B2) I 
00 
R 

'12 = -‘poTo 
T; (a2 + B2) 1 

* x-2 dll, T’ 
"21 = = x1.1, dTo o 

c22 = - [; TRX (cm0 + BWo - w) + (a2 + f32,/xl 
00 

27 



i 1 d'o --_c 
‘24 = X v. dTo 

C31 = i 
T-- 

c32 = - < 

c33 
=iy M 2 (au0 -I- owe - w) 

i 
c34 = - T 

(“IJo + gw - WI 
0 

Ra S 
c42 = - [uoTo To - 2 i (y-1)M2 o(aU;1 + Bw;) 1 

iR0 
c43 = l-Jo 

(y-l)M2 (au 
0 

+ BWo - WI 

c44 = 
iRa 

- 'p T (cNo + BW 0 
- w) + (a2 + B2) 

00 

- (y-l) aM2 + dpO 
/2 *2 

o q ("o +wo) 

dl.l 
_ 1 d21-1, (T;)2 _ k $ ‘,’ ] 

'o dT2 
0 

0 

R 
‘52 = - voTo 

1 d2vo dpO 

c54 = I-‘0 dT 2 
T; (cxW; - au,, + * - 

0 dTo 
0 

iR 
‘55 = - [uoTo 

(cm0 + BWo -,w) + a2 + B2) 1 

Here subscript o refers to the unperturbed boundary layer 

and primed quantities represent the derivative of the quantity. 

with respect to the boundary layer coordinate y. 
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In the above, 1-1 and y are the dynamic viscosity and 

the ratio of the specific heats respectively for the gas which 

is assumed. to be perfect. The Prandtl number CI is assumed to 

be constant. Moreover, X is defined as 

wZere p 2 is the ratio of the second coefficient of viscosity 

to the first. 

In the present study all velocities have been scaled 

by uet the x component of velocity at the edge of the boundary 

layer, and all lengths are scaled by 6*, the displacement thick- 

ness of the velocity profile in x-direction, Uo(y). The result- 

ant Reynolds number and Mach number are then given by 

U,S* 
R=- 

V 
e 

M= 'e 
Jy A T e 

where v and T e e are the kinematic viscosity and mean temperature 

in the free stream, and A is the universal gas constant. 

The results reported in the present paper were obtained 

with c = 0.72 and p2 = 1.2. Dynamic viscosity, p, was cal- 

culated using Sutherland's viscosity law. At least for the 

test cases considered in the present work, the results are 
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not sensitive to the value of p2. 

The special choice of $1 = cc6 + Bti and $5 = a% - 66 

allows the eighth&order system of equations to reduce to 

the sixth order for eigenvalue calculation if B45 is assumed 

tC) be zero. This assumption implies the absence of dissipa- 

tion. 
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APPENDIX II 

BOUNDARY CONDITIONS 
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In the free stream (y 1 ye), the governing equations (6) 

reduce to 

D2el + B12 D Q2 + Cl1 +1 + Cl3 e3 - 0 (11-l) 

D2@2 + B21 D $1 + B23 D $3 + C22 $2 = 0 (II-21 

DQ2 + C31 $1 + C33 $3 + C34 $4 = 0 (II-31 

D 
2 

@4,-+ C43 O3 + C44 44 = 0 

D2Q5 + C55 4, = 0 

(II-41 

(II-51 

where d 
D%- 

The non-zero coefficients B.. and C.. are the same 
13 13 

as in appendix1 except that they are no more dependent on y. By 

eliminating @,, the above equations can be written as 

+ a D$, + e$l + f$, = 0 (II-61 

D2q2 + b D$l + c Dq3 + g$, = C (II-71 

D2$3 + d D$2 + s$~ + h+l = 0 (11-8) 

where 

and 

a = B12 - c13'c33 

b = (B21 - B23C31 J/(1 
B23j 

- - 
c33 c33 

(II-91 



C = (-'B23C34/C33)/(1- 22) 
c33 

d = -c43/C33 

e = Cl1 - c13 c31'c33 

9 = c55 

Equations (11-6) - (11-9) admit a general solution of 

the form 

8 
Qi = C pj Zi(j) e 

A j (Y-Y,) 
;i=1,4 

j=l 
(11-10) 

where A. 
3 

are the eight characteristic roots of the coefficient 

matrix of Equations (11-6) - (11-9) and Zi 
Cj) are the components 

of the eight characteristic vectors z (3. 

The asymptotic condition 

Qi+O as y-f 00 

is imposed by requiring that the arbitrary constants p. 3 
vanish when 

Re(Aj) > 0. 
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There are four A. 
3 

which satisfy this condition resulting 

in four boundary conditions. 

The roots Xj (j = I,... 6) can be obtained from the 

characteristic equation (derived from Eqs. (11-6) - (11-8)) 

A4 + L2 x2 + L3 = 0 

where 

Ll = g +e+k-ab-cd 

L2 = ke - hf + eg + kg - abk + bdf - ted + ahc 

L3 = keg - ghf 

2 Assuming that X =X , the above sixth order equation 

reduces to the cubic equation 

x3 + L1 x2 + L 2x+L =o 3 

The roots of this cubic equation can be found as in 

[173 and consequently six of the X.'s are known. The com- 
7 

ponents of the corresponding characteristic vectors are 

tj) 
z1 

= 1 

d h? + de - ah 
,W = 3 

3 ka - fd + aAi 

,W = 
2 

_ (h2 + e + f z$j))/a X. 
j 7 

; j = I,6 

The seventh and eighth characteristic root is simply 

given as 

x7 
= (-q)+ 

X8 = - t-91 + 
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and the corresponding components of the characteristic 

vectors are 

z U3)= 1 
4 

All other components z Cj> are zero. 
i 

Now, let 

M = 

where 
8 

$J. = c 
IrY 

x ,W 
j=J 

Pj j i ehj ('-'e) ;i=1,4 

so 

8 
m. = 1 c ,W 

'j i 
ex j (Y-Y,) 

;i=1;8 
j=l 

where 

N= 

I 
&j) ’ 
x’, (3 

ji, 

;i=1,4 

The arbitrary constants p. 
3 

are obtained by inverting 

8x8 matrix N, 

P =N -' M 

The asymptotic boundary conditions require that P vanish 

whenever Re(hj)>O. This results in four equations of the 

form 

(ED + F) I/J = 0 

whereboth E and F are 4x4 matrices. 
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Table l.-Characteristics of the sample test cases on 
a 35O swept wing 

(chord, c = 8 ft). 

Case Streamwise 
No. Location, R M a B et 

x/c 

1 0.001868 145 0.386 0.272117 -0.29181 51.96O 

2 0.4639 3615 1.058 0.1153 0.0 26.93O 

3 0.8921 1754 0.736 0.2432 -0.2654 34.80° 

t Angle formed by the local potential flow vector with the x-axis. 



Table 2. -Timings for the global eigenvalue 
method (time given in seconds on a 

CYBER 175 computer). 

N 
8th order 6th order 

system system 

15 3.15 2.05 

20 7.12 5.17 

25 13.47 8.65 
_. ..--.-~.. 

Table 3 Timings for the local eigenvalue 
method 

N 
8th order 

system 
_-.- - 

6th order 
system 

20 0.61 0.40 

1.14 0.77 

80 2.22 1.52 
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Table 4. -Effect of the initial guess on the 
convergence of the local eigenvalue method 
for case 3 using N = 80, (8th-order system). 

Tim& requiyer 
Initial guess for convergence 

(0.011595,0.0023522)* 1.82 

(0.01~,0.002) 2.38 

(0.02,0.004) 2.95 

(0.02,0.008) 3.10 

(0.005,0.001) 3.11 

(0.03,0.006) 3.50 

(0.04,0.004) not converged 

* equals the converged value 

Table 5.- Computed group velocities-for 
cases l-3 using N = 80, (8th-order system). 

w a 
Case Central Present 

% 
Central Present 

No. difference method difference method 
formula formula 

1 (0.66039, (0.66036, -~ (0.73769 jO.73771, 
-0.00625) -0.00636) 0.01386) 0.01398) 

2 (0.39893, (0.39876, (0.21884, (0.21867, 
0.02105) 0.02063) -0.000987) -0.00155) 

3 (0.53507, (0.53512, (0.44301, (0.44295, 
-0.05212) -0.05219) -0.04472) -0.04464) 
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Table 6. -Richardson extrapolation of the most unstable eigenvalue for case 1 

Re(w) x 10 

i N m= 0 1 2 3 4 5 

1 20 -.2686117 -.2629801 -.2630158 -.2630098 -.2630087 -.2630100 

2 40 -.2643880 -.2630118 -.2630102 -.2630087 -,2630099 

3 60 -2.636234 -.2630106 -.2630089 0.2630099 

4 80 -.2633553 -.2630093 -.2630097 

5 120 -.2631631 -.2630096 

6 160 -.2630959 

Im(w) x 100 

i N m= 0 1 2 3 4 5 

1 20 .6073290 .6191717 .6186855 .6185509 .6186694 .6186523 

2 40 .6162110 .6187395 . 6185593 .6186661 .6186525 

3 60 .6176158 .6186043 .6186542 .6186534 

4 80 .6180483 .6186418 .6186535 

5 120 .6183780 .6186506 

c 
6 160 .6184972 



iti Table 7.- Richardson extrapolation of the most unstable eigenvalue for case 2 

Re(w) x 10 
i N m= 0 1 2 3 4 5 

1 20 .3940779 .3877680 .3889774 . 3888798 .3888478 .3888521 

2 40 .3893454 .3888430 .3888859 . 3888486 . 3888520 

3 60 .3890663 .3888751 .3888528 . 3888518 

4 80 .3889827 .3888584 .3888519 

5 120 .3889136 .3888535 

6 160 .3888873 

Im(w) x 100 

i N m= 0 1 2 3 4 5 

1 20 .0725901 .1230929 .1228928 .1227987 .1228500 .1228501 

2 40 .1104672 .1229150 .1228046 .1228486 .1228501 

3 60 .1173826 .1228322 .1228437 . 1228500 

4 80 .1197668 .1228408 .1228491 

5 120 .1214746 .1228470 

6 160 .1220750 



Table 8.-Richardson extrapolation of the most unstable eigenvalue for case 3 

Re(w) x 10 

i N m= 0 1 2 3 4 5 

1 20 .1171532 .1158833 .1158746 .1158764 .1158752 .1158759 

2 40 .1162008 .1158756 .1158763 .1158752 .1158759 

3 60 .1160201 .1158761 .1158754 .1158758 

4 80 .1159571 .1158756 .1158758 

5 120 .1159118 .1158757 

6 160 .1158960 

Im(w) x 100 
i N m= 0 1 2 3 4 5 

1 20 .2200906 .2362895 .2362199 .2362203 .2362156 .2362186 

2 40 .2322398 .2362276 .2362203 .2362158 .2362185 

3 60 .2344553 .2362221 .2362163 .2362184 

4 80 .2352283 .2362177 .2362181 

5 120 .2357780 .2362180 

6 160 .2359705 

lh 
W 



Table 9. -Comparison of eigenvalues obtained 
using different orders of extrapolation 

Case 
No. 

Three point Six point 
extrapolation extrapolation 
using N = 20, (see tables 
30 and 40 6-8) 

1 (-0.026303, (-0.026301, 
0.0061848) 0.0061865) 

2 ( 0.038889, ( 0.038885, 
0.0012324) 0.0012285) 

3 ( 0.011587, ( ,0.011587, 
0.0023623) 0.0023621) 
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( FREE STREAM ) 

q=l 0 
1 

-----------l/2 
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j-l 

(7) -----------j+l/2 
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N-l 
e--e- ------N-l/2 

Figure la- A SCHEMATIC OF THE STAGGARD FINITE-DIFFERENCE GRID 
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